Cofactor Expansion Calculator

The cofactor expansion calculator helps you to calculate the determinant of the matrix using the cofactor matrix method in some seconds.

Table of Contents:

Introduction to Cofactor Expansion Calculator?

Cofactor Expansion Calculator with steps is an amazing tool that is used to compute the determinant of a matrix using the cofactor expansion method. Our tool helps you to find the cofactor expansion of determinants for different orders whether it has 2 by 2, 3 by 3, or even 4 by 4 order.

Cofactor Expansion Calculator

The cofactor calculator is a valuable tool for students, researchers, and professionals as It simplifies the process of evaluating the determinants to find the specific elements from matrices in linear algebra.

What is Cofactor Expansion?

Cofactor expansion is a method that is used to calculate the determinant of a square matrix or to find specific elements within the matrix. It is known as cofactor expansion or expansion by minors method.

Cofactor expansion is widely used in solving systems of linear equations, calculating the inverse of a matrix, and understanding the properties of transformations and transformations of spaces.

How to Find Determinants by Cofactor Expansion?

To find the determinant using the cofactor expansion formula, the cofactor expansion calculator breaks down the n by n order of the matrix into smaller parts as the cofactors of 2x2 matrices in which each element is associated with that matrix. Here is a step-by-step guide on how to perform cofactor expansion:

Step 1:

Identify the given matrix and its order.

$$ A \;=\; \left[ \begin{matrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ \end{matrix} \right] $$

Step 2:

To make the cofactor(breakdown into the simplest matrix), select any row or column of the matrix for expansion such as:

If you select first row then leave the first row and first column and select the leftover matrix as a cofactor.

$$ a_{11} \;=\; C_{11} \;=\; (-1)^{1+1} \left| \begin{matrix} a_{22} & a_{23} \\ a_{32} & a_{33} \\ \end{matrix} \right| \;=\; +(a_{22} . a_{33} - a_{23} . a_{32}) $$

If you select the second row then leave the second row and second column and select the leftover matrix as a cofactor.

$$ a_{32} \;=\; C_{23} \;=\; (-1)^{2+3} \left| \begin{matrix} a_{11} & a_{13} \\ a_{21} & a_{23} \\ \end{matrix} \right| \;=\; -(a_{11} . a_{23} - a_{13} . a_{21}) $$

If you select the third row then leave the third row and third column and select the leftover matrix as a cofactor.

$$ a_{23} \;=\; C_{23} \;=\; (-1)^{2+3} \left| \begin{matrix} a_{11} & a_{12} \\ a_{31} & a_{32} \\ \end{matrix} \right| \;=\; -(a_{11} . a_{32} - a_{12} . a_{31}) $$

Step 3:

For each element in the selected row or column, calculate its cofactor. The cofactor of an element is given by:

$$ C_{ij} \;=\; (−1)i + j ⋅ M_{ij} $$

Where Mij is the determinant of the cofactor matrix (submatrix) obtained by removing the i-th row and j-th column from the original matrix A.

Step 4:

Solve the cofactor expanded matrix to ith or jth form,

$$ der(A) \;=\; \sum_{j=1}^{n} a_{ij} C_{ij} $$

$$ det(A) \;=\; \sum_{i=1}^{n} a_{ij} C_{ij} $$

Solved Example of Cofactor Expansion:

Lets us see an example to understand the cofactor expansion of a determinant to understand how the cofactor expansion calculator with steps works.

Example:

$$ \left( \begin{matrix} 2 & 0 & 3 \\ 1 & -1 & 4 \\ 5 & 2 & 0 \\ \end{matrix} \right) $$

Solution:

For a11:

$$ \left( \begin{matrix} -1 & 4 \\ 2 & 0 \\ \end{matrix} \right) $$

$$ det \left( \left( \begin{matrix} -1 & 4 \\ 2 & 0 \\ \end{matrix} \right) \right) \;=\; (-1)(0) - (4)(2) \;=\; -8 $$

$$ C_{11} \;=\; (-1)^{1+1} . (-8) \;=\; -8 $$

For a12:

$$ \left( \begin{matrix} 1 & 4 \\ 5 & 0 \\ \end{matrix} \right) $$

$$ det \left( \left( \begin{matrix} 1 & 4 \\ 5 & 0 \\ \end{matrix} \right) \right) \;=\; (1)(0) - (4)(5) \;=\; -20 $$

$$ C_{12} \;=\; (-1)^{1+2} . (-20) \;=\; 20 $$

For a13:

$$ \left( \begin{matrix} 1 & -1 \\ 5 & 2 \\ \end{matrix} \right) $$

$$ det \left( \left( \begin{matrix} 1 & -1 \\ 5 & 2 \\ \end{matrix} \right) \right) \;=\; (1)(2) - (-1)(5) \;=\; 2 + 5 \;=\; 7 $$

$$ C_{13} \;=\; (-1)^{1+3} . 7 \;=\; 7 $$

Calculate the determinant of matrix A,

$$ det(A) \;=\; a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13} \;=\; (2)(-8) + (0)(20) + (3)(7) $$

$$ det(A) \;=\; -16 + 0 + 21 \;=\; 5 $$

So the solution of given cofactor determinant matrix problem is 5.

How to Use Cofactor Expansion Calculator?

The cofactor calculator has a user-friendly design that enables you to use it to easily calculate cofactor expansion questions. Before adding the input as a determinant matrix for solutions, you just need to follow some simple steps. These steps are:

  1. Add the size of the cofactor matrix expansion
  2. Enter the elements of the matrix in the input box to find the cofactor expansion question with the solution.
  3. Recheck your input matrix value before hitting the calculate button to start the calculation process in the cofactor expansion 4x4 calculator.
  4. Click on the “Calculate” button to get the desired result of your given cofactor expansion questions with a solution.
  5. If you want to try out our cofactor expansion determinant calculator for the first time then you can use the load example.
  6. Click on the “Recalculate” button to get a new page for solving cofactor expansion problems to get solutions.

Results from Cofactor Calculator:

Cofactor Expansion Calculator with steps gives you the solution to a given problem when you add the input value in it. It provides you with the solutions of the cofactor expansion question. It may contain as:

  • Result Option:

When you click on the result option then it provides you with a solution for the cofactor expansion question

  • Possible Step:

When you click on the possible steps option it provides you with the solution of cofactor expansion problems in steps.

Advantages of Cofactor Expansion 4x4 Calculator:

The cofactor calculator has many advantages that you obtain whenever you use it to calculate cofactor expansion problems and get solutions without giving any manual guide. These advantages are:

  • It is a free tool so you can use it to find the cofactor expansion problems with a solution.
  • The cofactor expansion determinant calculator is an adaptable tool that can operate through electronic devices like laptops, computers, mobile, tablets, etc with the help of the internet only.
  • Our tool saves the time and effort that you consume in doing lengthy calculations of cofactor expansion in a few seconds.
  • It is a learning tool so you can use our tool for practice so that you get in-depth knowledge.
  • It provides you solutions in a complete process in a step-by-step method for a better understanding of Cofactor Expansion questions.
  • It is a trustworthy tool that provides you with accurate solutions according to your input whenever you use the Cofactor Expansion Calculator with steps to get a solution.
Related References
Frequently Ask Questions

Can you row reduce cofactor expansion?

Yes, the row can be reduced using cofactor expansion after evaluating the row reduction to find the determinant of a matrix and simplify it. Let us understand the process with an example in steps.

$$ A \;=\; \left(\begin{matrix} 2 & -1 & 3 \\ 4 & 1 & 2 \\ 1 & -3 & 1 \\ \end{matrix} \right) $$

Use the row reduction method to simplify the given matrix,

$$ R1 \;=\; \frac{1}{2} R1 $$

$$ \left(\begin{matrix}1 & -0.5 & 1.5 \\ 4 & 1 & 2 \\ 1 & -3 & 1 \\ \end{matrix} \right) $$

$$ R2 \;=\; R2 - 4R1 $$

$$ R3 \;=\; R3 - R1 $$

$$ \left(\begin{matrix} 1 & -0.5 & 1.5 \\ 0 & 3 & -4 \\ 0 & -2.5 & -0.5 \\ \end{matrix} \right) $$

$$ R2 \;=\; \frac{1}{3} R2 $$

$$ \left(\begin{matrix} 1 & -0.5 & 1.5 \\ 0 & 1 & -\frac{4}{3} \\ 0 & -2.5 & -0.5 \\ \end{matrix} \right) $$

$$ R3 \;=\; R3 + 2.5 R2 $$

$$ \left(\begin{matrix} 1 & -0.5 & 1.5 \\ 0 & 1 -\frac{4}{3} \\ 0 & 0 & \frac{10}{3} \\ \end{matrix} \right) $$

After row reducing, use cofactor expansion to find the determinant, but since the matrix is now in upper triangular form, the determinant is the product of the diagonal elements.

$$ det(A) \;=\; 1 . 1 . \frac{10}{3} \;=\; \frac{10}{3} $$

When do you use in cofactor expansion?

Cofactor expansion is a method that is used to calculate the determinant of a square matrix. It is particularly useful in certain scenarios, such as:

  1. Cofactor expansion can simply find the smaller matrices (e.g., 2x2 or 3x3), cofactor expansion in an easy way
  2. If a row or column contains many zeros, cofactor expansion becomes much simpler since the terms involving zeros do not contribute to the sum.
  3. When dealing with symbolic(variables without numerical value) matrices, cofactor expansion can be useful for finding a determinant in a closed form.
  4. Cofactor expansion is often used in teaching to help students to understand the concept of determinants, minors, and cofactors.
  5. In linear algebra, the cofactor expansion has many applications in physics and engineering where the cofactor expansion is required to determine the given expression.

How to calculate the cofactor of a 3x3 matrix?

To calculate the cofactor of a 3 by 3 matrix, let us take an example of a square matrix A with solution.

$$ A \;=\; \left( \begin{matrix} 2 & 0 & 3 \\ 1 & -1 & 4 \\ 5 & 2 & 0 \\ \end{matrix} \right) $$

Solution:

Select the row to find the cofactor of a given matrix A

$$ For\; a_{11}: \left(\begin{matrix} -1 & 4 \\ 2 & 0 \\ \end{matrix} \right) $$

$$ det\left(\left(\begin{matrix} -1 & 4 \\ 2 & 0 \\ \end{matrix} \right)\right) \;=\; (-1)(0) - (4)(2) \;=\; -8 $$

$$ C_{11} \;=\; (-1)^{1+1} . (-8) \;=\; -8 $$

$$ For\; a_{12}: \left(\begin{matrix} 1 & 4 \\ 5 & 0 \\ \end{matrix} \right) $$

$$ det \left(\left(\begin{matrix} 1 & 4 \\ 5 & 0 \\ \end{matrix} \right) \;=\; (1)(0) - (4)(5) \;=\; -20 \right)$$

$$ C_{12} \;=\; (-1)^{1+2} . (-20) \;=\; 20 $$

$$ For\; a_{13}: \left(\begin{matrix} 1 & -1 \\ 5 & 2 \\ \end{matrix} \right) $$

$$ det \left(\left(\begin{matrix} 1 & -1 \\ 5 & 2 \\ \end{matrix} \right)\right) \;=\; (1)(2) - (-1)(5) \;=\; 2 + 5 \;=\; 7 $$

$$ C_{13} \;=\; (-1)^{1+3} . 7 \;=\; 7 $$

Expand the given matrix A:

$$ det(A) \;=\; a_{11} C_{11} + a_{12} C_{12} + a_{13} C_{13} \;=\; (2)(-8) + (0)(20) + (3)(7) $$

$$ det(A) \;=\; -16 + 0 + 21 \;=\; 5 $$

So, the determinant of matrix A is 5.

How to Convert a Co-factor Matrix to the Adjoint of a Matrix?

To convert the cofactor matrix to the adjoint (or adjugate) of a 3×3 matrix, follow these steps:

Take the transpose of the given matrix A as AT

$$ A \;=\; \left(\begin{matrix} a & b & c \\ d & e & f \\ g & h & i \\ \end{matrix} \right) $$

$$ C_{ij} \;=\; (-1)^{i+j} \times det(M_{ij}) $$

Where det(Mij) is the determinant of the 2×2 minor matrix obtained by removing the i-th row and j-th column.

Let's compute the cofactors for each element in matrix A:

$$ C_{11} \;=\; (-1)^{1+1} . det \left(\begin{matrix} e & f \\ h & i \\ \end{matrix} \right) \;=\; ei - fh $$

$$ C_{12} \;=\; (-1)^{1+2} . det \left(\begin{matrix} d & f \\ q & i \\ \end{matrix} \right) \;=\; -(di - fg) $$

$$ C_{13} \;=\; (-1)^{1+3} . det \left(\begin{matrix} d & e \\ g & h \\ \end{matrix} \right) \;=\; dh - eg $$

$$ C_{21} \;=\; (-1)^{2+1} . det \left(\begin{matrix} b & c \\ h & i \\ \end{matrix} \right) \;=\; -(bi - ch) $$

$$ C_{22} \;=\; (-1)^{2+2} . det \left( \begin{matrix} a & c \\ g & i \\ \end{matrix} \right) \;=\; ai - cg $$

$$ C_{23} \;=\; (-1)^{2+3} . det \left(\begin{matrix} a & b \\ g & h \\ \end{matrix} \right) \;=\; -(ah - bg) $$

$$ C_{31} \;=\; (-1)^{3+1} . det \left(\begin{matrix} b & c \\ e & f \\ \end{matrix} \right) \;=\; bf - ce $$

$$ C_{32} \;=\; (-1)^{3+2} . det \left(\begin{matrix} a & c \\ d & f \\ \end{matrix} \right) \;=\; -(af - cd) $$

$$ C_{33} \;=\; (-1)^{3+3} . det \left(\begin{matrix} a & b \\ d & e \\ \end{matrix} \right) \;=\; ae - bd $$

So, the cofactor matrix is:

$$ Cofactor\; matrix \;=\; \left( \begin{matrix} ei - fh & -(di - fg) & dh - eg \\ -(bi - ch) & ai - cg & -(ah - bg) \\ bf - ce & -(af - cd) & ae - bd \\ \end{matrix} \right) $$

$$ Adjugate\; Matrix \;=\; \left( \begin{matrix} ei - fh & -(bi - ch) & bf - ce \\ -(di - fg) & ai - cg & -(af - cd) \\ dh - eg & -(ah - bg) & ae - bd \\ \end{matrix} \right) $$

How to calculate the cofactor of a 2x2 matrix?

To calculate the cofactor of a 2×2 matrix, you need to follow these steps:

$$ \left(\begin{matrix} a & b \\ c & d \\ \end{matrix} \right) $$

Solution:

Cofactor of a (C11): Remove the first row and select the first column d, so the determinant is d.

$$ C_{11} \;=\; (-1)^{1+1} . d \;=\; d $$

Cofactor of b (C12):

Remove the first row and the select second column as (c), so the determinant is c.

$$ C_{12} \;=\; (-1)^{1+2} . c \;=\; -c $$

Cofactor of c (C21):

Remove the second row and the first column (b), so the determinant is b.

$$ C_{21} \;=\; (-1)^{2+1} . b \;=\; -b $$

Cofactor of d (C22):

Remove the second row and select the second column as a, so the determinant is a.

$$ C_{22} \;=\; (-1)^{2+2} . a \;=\; a $$

The cofactor matrix of the given 2×2 matrix is:

$$ \left(\begin{matrix} d & -c \\ -b & a \\ \end{matrix} \right) $$

Is This Tool Helpful